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Abstract

Background: The ability to navigate obstacles and embrace iteration following failure is a hallmark of a scientific
disposition and is hypothesized to increase students’ persistence in science, technology, engineering, and
mathematics (STEM). However, this ability is often not explicitly explored or addressed by STEM instructors. Recent
collective interest brought together STEM instructors, psychologists, and education researchers through the
National Science Foundation (NSF) research collaborative Factors affecting Learning, Attitudes, and Mindsets in
Education network (FLAMEnet) to investigate intrapersonal elements (e.g., individual differences, affect, motivation)
that may influence students’ STEM persistence. One such element is fear of failure (FF), a complex interplay of
emotion and cognition occurring when a student believes they may not be able to meet the needs of an
achievement context. A validated measure for assessing FF, the Performance Failure Appraisal Inventory (PFAI) exists
in the psychological literature. However, this measure was validated in community, athletic, and general
undergraduate samples, which may not accurately reflect the motivations, experiences, and diversity of
undergraduate STEM students. Given the potential role of FF in STEM student persistence and motivation, we felt it
important to determine if this measure accurately assessed FF for STEM undergraduates, and if not, how we could
improve upon or adapt it for this purpose.

Results: Using exploratory and confirmatory factor analysis and cognitive interviews, we re-validated the PFAI with
a sample of undergraduates enrolled in STEM courses, primarily introductory biology and chemistry. Results indicate
that a modified 15-item four-factor structure is more appropriate for assessing levels of FF in STEM students,
particularly among those from groups underrepresented in STEM.

Conclusions: In addition to presenting an alternate factor structure, our data suggest that using the original form
of the PFAI measure may significantly misrepresent levels of FF in the STEM context. This paper details our
collaborative validation process and discusses implications of the results for choosing, using, and interpreting
psychological assessment tools within STEM undergraduate populations.
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Introduction
The ability to navigate obstacles and embrace an itera-
tive process in response to failure is considered a hall-
mark of the scientific disposition and has been
hypothesized to increase students’ persistence in STEM
(Harsh et al. 2011; Laursen et al. 2010; Lopatto et al.
2008; Simpson and Maltese 2017; Thiry et al. 2012). The
ways in which this ability can be fostered through under-
graduate science, technology, engineering, or mathemat-
ics (STEM) education is a topic both historically
underexplored by researchers and under-addressed by
explicit instructor-driven curricula (Simpson and Mal-
tese 2017; Traphagen 2015). However, recent increased
interest in investigating the effects of various intraper-
sonal attributes on STEM students’ ability to navigate
scientific obstacles has set the stage for promising edu-
cational research in this arena. Intrapersonal elements,
previously referred to more broadly as “noncognitive fac-
tors” (Henry et al. 2019), include a subset of one’s indi-
vidual competencies not related to one’s intelligence or
knowledge. For example, intrapersonal elements include
mindsets, attitudes, and beliefs, among other elements
related to one’s understanding of their own experience
(this is contrasted with interpersonal elements, such as
empathy and other social skills, which involve recogniz-
ing others’ perspectives and experiences; Farrington
2019; National Research Council 2012). Many of these
intrapersonal elements—such as fear of failure (FF), the
topic of this work—are predicted to influence students’
engagement with challenges, responses to failure, and
subsequent academic success (Henry et al. 2019). Yet,
unlike some predictors of success that can be measured
directly (e.g., prior achievement), most intrapersonal ele-
ments consist of latent variables, which cannot be dir-
ectly observed or measured. Such variables must be
assessed using multiple metrics (often multiple questions
on a survey) that together allow us to estimate levels of
the underlying construct (Knekta et al. 2019). Unfortu-
nately, measures for these elements often either do not
exist or may not be valid for our population of interest,
STEM undergraduates. This is the case for FF. In this
study, we build on prior work that describes the validity
of a measure of FF, the Performance Failure Appraisal
Inventory (PFAI). We investigate the validity of this in-
strument and work to improve and modify it for use
with STEM undergraduates. Our aim was to provide a
suitable revision of the PFAI and make it available to in-
structors and education researchers to measure FF in
undergraduate STEM contexts.

Fear of failure
FF involves a complex interplay of emotion (Martin and
Marsh 2003), personality (Noguera et al. 2013), and cog-
nition (Conroy 2001). Historically, research has focused

separately on these three aspects. Past researchers have
described FF as either (a) purely affective, consisting of
feelings of anxiety, nervousness, or worry when consid-
ering future failures; (b) an aspect of personality, for ex-
ample having a high degree of neuroticism that
consistently contributes to FF across all contexts; or (c)
a context-specific cognitive assessment that evaluates a
given situation as a threat to success (e.g., evaluation of
failing a class as being a determinant of admission to
medical school, and given this, fear of failing). However,
more recent work recognizes that all of these domains
are interrelated and contribute to the most comprehen-
sive explanation of FF (Henry et al. 2019). Specifically,
Cacciotti (2015) defined FF as a “temporary cognitive
and emotional reaction towards environmental stimuli
that are apprehended as threats in achievement con-
texts” (p. 59). An achievement context includes any situ-
ation in which (1) some task must be performed, (2) the
task will be evaluated against standards or expectations,
and (3) one must have certain competencies in order to
carry out the task to those standards (Cacciotti 2015). In
other words, FF is manifested in anxiety-based thoughts
and emotions when one believes they may be unable to
meet the demands of an achievement context. It is im-
portant to distinguish this multidimensional view of FF
from constructs that solely describe emotion, such as
anxiety. While these have been used as analogs for FF in
the past, our modern understanding of FF recognizes
that focusing only on the emotional aspects of the ex-
perience provides an incomplete understanding. For ex-
ample, focusing only on emotion fails to recognize the
cognitive appraisals of an achievement context that are
often the root cause of affective states and may consti-
tute specific targets for interventions seeking to alleviate
FF. In other words, exploring the emotions related to FF
(like anxiety) is necessary, but not sufficient, for a
complete understanding of FF (Henry et al. 2019).
A key component of this definition is that one’s level of

FF may change based upon the specific details of the
achievement context or other contextual factors (Conroy
2001). For example, if two students enrolled in introduc-
tory biology have different goals, they will create different
achievement contexts based on those expectations. If Stu-
dent A is only enrolled because the course fulfills a general
education requirement, the demands to satisfy the
achievement context may be relatively low (e.g., just pass
the class). The student is therefore less likely to experience
FF. However, Student B, who is pursuing graduate study
or a health career, is likely to judge the achievement con-
text to be much more demanding (e.g., anything less than
an A is unacceptable). While these students may generally
differ to some extent in their baseline levels of FF, Student
B will also likely experience greater FF, in part because
they perceive the stakes of failure to be higher.
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FF is broadly recognized as an element that can lead
to avoidance of challenge, lower motivation, and self-
impeding behaviors (e.g., making excuses, reduced effort,
etc.; Chen et al. 2009). It has been studied extensively in
K-12 contexts (e.g., Caraway et al. 2003; De Castella
et al. 2013; Pelin and Subasi 2020) and in certain nonac-
ademic contexts, such as entrepreneurship (e.g., Cac-
ciotti et al. 2016) and sports (e.g., Conroy et al., 2001;
Sagar et al., 2010). It has also been studied extensively in
undergraduate students broadly (Bartels and Herman
2011; Bledsoe and Baskin 2014; Chen et al. 2009; Elliot
and Church 1997; Elliot and Church 2003; Elliot and
McGregor 2001; Elliot and Thrash 2004). Yet, despite its
potential to impact achievement, FF has not been stud-
ied extensively in STEM undergraduate contexts. This is
surprising given that “embracing failure” is seen as a ne-
cessary skill for professional scientists and that STEM
individuals are known to view failures in ways distinct
from those in other fields (Simpson and Maltese 2017).
Although studies are few in number, several lines of evi-
dence suggest that STEM students experience FF and
that this may either limit engagement in STEM learning
or, in some cases, prevent engagement altogether. Re-
searchers have found that FF positively predicts procras-
tination behaviors for pre-health undergraduates (Zhang
et al., 2018) and that this relationship extends to STEM
graduate students in statistics courses (Onwuegbuzie,
2004). Similarly, work on understanding the causes of
student anxiety during active learning in STEM class-
rooms cites a closely related construct, fear of negative
evaluation by others, as an important cause of anxiety
that can hamper students’ motivation to participate in
class (Cooper et al. 2018; Downing et al. 2020). Ceyhan
and Tillotson (2020) found that undergraduate STEM
majors weighed their FF as an element influencing their
motivation to engage in undergraduate research, citing
the emotional cost of engagement. This is especially not-
able considering the enthusiasm for and movement to-
wards research-based courses that are more likely to
expose students to scientific failures (Auchincloss et al.
2014; Corwin et al. 2015; Gin et al. 2018). Indeed, FF
may become more salient to students engaged with these
new pedagogies. Prior work also suggests that FF differs
among male- and female-identified STEM undergradu-
ate students (Nelson et al., 2021), suggesting that we
need to consider differential effects of FF across iden-
tities in STEM. Finally, and most importantly, FF may
predict whether or not students ultimately choose a
STEM major or choose to remain a STEM major after
their first semester at college (Nelson et al. 2019). FF
may contribute to the extensive drop in STEM majors
typically seen after the first year in STEM fields (Nelson
et al. 2019; Seymour and Hunter 2019). STEM instruc-
tors recognize that assisting students in coping with

failure and alleviating FF are important priorities when
training future scientists (Gin et al. 2018; Henry et al.
2019; Simpson and Maltese 2017). However, we must be
able to accurately measure the effects of these efforts if
we are to understand how teaching practices can serve
to alleviate FF.

Measuring fear of failure
Given the complex nature of FF, it can be difficult to
conceptualize a valid measure which fully captures all of
its properties. For example, risk aversion was historically
used as a proxy for FF, but contemporary researchers
now acknowledge that, while risk aversion may tap into
some of the emotional aspects of FF, it likely does not
fully represent the personality or cognitive aspects
(Noguera et al. 2013), nor is it responsive to changes in
context (Conroy 2001). Beginning in 2001, Conroy and
colleagues addressed these concerns by attempting to
understand the causes of FF at the individual level,
resulting in the creation and refinement of a multidi-
mensional assessment measure: the PFAI.
To characterize FF, Conroy et al. (2001) conducted in-

terviews with eight adult elite athletes and eight adult
elite performing artists (50% female). In these interviews,
subjects provided insight into their definitions of failure,
what situations or contexts they considered “failures” in
the past, and how they reacted to experiencing those sit-
uations (Conroy et al. 2001). Based on a content analysis
of these interviews, Conroy et al. (2001) created 89 items
that could be classified under ten broad sources of FF
(e.g., fear of an uncertain future). They then asked 396
high school and college-aged student-athletes (mean age
= 19.3 years, SD = 4.3) to respond to these 89 items.
Each statement evoked a situation in which the student
was “failing” or “not succeeding” and students rated each
item on a scale of “Do not believe [this to be true] at all
(− 2)” to “Believe [this to be true] 100% of the time (+
2)”. For example, students read the statement “When I
am failing, my future seems uncertain” and then selected
whether they believed this to be true and to what degree.
Conroy and colleagues then used factor analysis, which
groups items according to statistical relationships that
correspond to psychological constructs—in this case,
types of FF. This work narrowed the number of PFAI
items down to 41, loading strongly onto five factors
(meaning that the items cluster broadly into five mean-
ingful categories or dimensions, rather than the originally
proposed 10, see Knekta et al. (2019) for an explanation
of how factors are formed). Subsequent factor analyses
with samples of only college student participants further
reduced the number of items on the PFAI from 41 to
25, with five items measuring each dimension, or reason
for demonstrating FF (Table 1; Conroy et al. 2002).
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The current work
Addressing FF is especially important when considering
the broader challenge of finding and validating measures
of intrapersonal elements for STEM undergraduates
(Knekta et al. 2019; Rowland et al. 2019) and the more
specific challenge of assessing the influence of intraper-
sonal elements on students’ resilience, motivation to en-
gage in challenging tasks, and ability to navigate
obstacles when they arise (Henry et al. 2019). Previous
research utilizing the PFAI as an assessment measure
has found that increased FF is related to reduced chal-
lenge engagement (Bledsoe and Baskin 2014). This can
most clearly be seen in high-FF students who demon-
strate self-impeding behaviors by reducing effort or
making excuses before failure occurs, thereby protecting
their self-worth in the short term at the risk of long-
term success (Berglas and Jones 1978; Chen et al. 2009;
Cox 2009; Zuckerman and Tsai 2005). While these re-
sults were found in academic, community, and broad
college contexts, they have not yet been investigated spe-
cifically in undergraduate STEM education, a context in
which challenge engagement is likely critical for progress
(Henry et al. 2019) but where failure is also a commonly
accepted part of the process (Simpson and Maltese
2017). The contextual nature of both FF (Cacciotti 2015)
and human cognitive appraisals (Schwarz 1999) suggests
that FF is likely to manifest in significantly different ways
depending upon the achievement context(s) one is asses-
sing. Therefore, college students in a STEM context are
likely to experience FF differently than students in high
school or non-STEM courses. Many students enrolled in
STEM courses enter with intentions of pursuing gradu-
ate study or health careers (e.g., Gasiewski et al. 2012),
which can make achievement contexts more salient. In
addition, the active research that students may engage in
during the course of STEM education often includes
tasks that have a higher likelihood of failure or not
achieving a stated research goal (Auchincloss et al.
2014), and this may represent one of the first times stu-
dents encounter an academic situation in which judging
success against the achievement context is difficult or
unclear. All of these contextual factors influence how
STEM students experience FF and also how they will re-
spond to assessments of FF. To investigate and

understand FF in STEM contexts, we need to ensure
that we can accurately measure FF for STEM students.
Any education research conducted on a topic will only

be as strong as the assessment tools used for the con-
structs of interest (Cronbach and Meehl 1955). While
the PFAI was originally constructed using a sample that
included some college students, these students were only
used for factor analyses to reduce the number of items
and refine the measure for certain types of FF. They
were not interviewed as part of the initial creation of the
items or to ascertain how they interpreted the items and
if this interpretation matched the assumptions and defi-
nitions of FF researchers. This reveals a critical unmet
need, because there is much about college contexts—
and undergraduate STEM achievement contexts more
specifically—which could affect students’ responses and/
or alter response patterns to the PFAI. Such contextual
factors could make Conroy’s proposed factor structure
inappropriate and invalid for these specialized popula-
tions of interest. This is important, because if the PFAI
is not valid for undergraduate STEM samples, using it
for education research could lead to misrepresentation
of FF levels and faulty conclusions about levels of FF
present in STEM classrooms or the efficacy of interven-
tions that aim to reduce FF within that context. As such,
we set out to build upon the work of Conroy et al.
(2002) to (a) ascertain specifically how STEM under-
graduates interpret PFAI questions related to Conroy
et al.’s (2002) proposed dimensions of FF and (b) refine
the PFAI for assessing FF in undergraduate STEM con-
texts. First, we used confirmatory factor analysis (CFA)
to test whether Conroy’s proposed five-factor model is
appropriate for measuring STEM undergraduates’ FF.
Then, we used exploratory factor analysis (EFA) to con-
sider alternative factor structures and evaluate whether
any offer a better fit for data from an undergraduate
STEM sample. Once we identified the “strongest” factor
structure for the initial sample of STEM students, we
performed additional CFA analyses in several other sam-
ples to confirm this structure. We then asked whether
that factor structure remains a good fit for science
PEERs—persons excluded because of their ethnicity or
race (Asai 2020) using an additional CFA. Finally, we
conducted a series of cognitive interviews among

Table 1 Sample items representing the five dimensions of the original PFAI (Conroy et al. 2002)

Dimension/factor name Abbreviation Sample item

Fear of shame or embarrassment FSE “When I am not succeeding, I worry about what others think of me.”

Fear of devaluing one’s self-estimate FDSE “When I am failing, I blame my lack of talent.”

Fear of having an uncertain future FUF “When I am failing, it upsets my ’plan’ for the future.”

Fear of important others losing interest FIOLI “When I am not succeeding, some people are not interested in me anymore.”

Fear of upsetting important others FUIO “When I am failing, I lose the trust of people who are important to me.”
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students to assess the face and content validity of our
final revised measure to (a) ensure that students find all
items clear and easy to understand and (b) better
characterize the nuance with which STEM undergradu-
ate students interpret the PFAI items. The progression
of our analyses and their basic goals is outlined in Fig. 1,
with more details about each analysis’ sample and the lo-
cation of specific results detailed in Table 2. Below, we
describe each of these steps, their methods, results, and
a brief discussion of their findings before concluding
with a broad discussion of our modified measure and its
suitability for assessing FF in undergraduate STEM stu-
dent populations.

Step 1: Confirmatory factor analyses (CFAs) of
existing models
CFAs serve to test whether a measure of a construct—in
this case the PFAI—is consistent with the proposed un-
derstanding of that construct (i.e., FF) and its compo-
nents. A good “fit” of the data collected with a particular
measure to the proposed conceptual model indicates
that the measure is accurate with regard to the re-
searchers’ understanding of the construct and its compo-
nents. When there is strong a priori and/or empirical
evidence supporting a conceptual model—as in the case
of the PFAI—it is best to start with CFAs when explor-
ing measure utility for new populations (Knetaka et al.,
2019). Thus, the purpose of our initial CFA analyses was
twofold: (a) to investigate whether data collected from a
sample of undergraduate STEM students fit to the
current factor structure (twenty-five items on five fac-
tors) proposed by Conroy et al. (2002) and (b) to assess
whether or not a change in item wording to prompt stu-
dents to consider struggles and failures specifically in
STEM contexts improves the model fit. We reasoned
that the alternate wording would result in an improved
model fit, as it addresses the specific, unique (as dis-
cussed above) STEM education context in which stu-
dents find themselves frequently confronting academic
challenges and failures. We explored this possibility with
the aim of creating a version of the PFAI best suited to
assess STEM-related FF in undergraduate students.

Methods
Participants
Four hundred and twenty-three undergraduate students
were recruited for this study during Spring/Summer
2018. Students were recruited with the aid of STEM in-
structors at a diverse group of institutions—public and
private; rural and urban; liberal arts and research-
intensive—across multiple regions of the USA. Recruit-
ing instructors were members of FLAMEnet, an NSF-
funded research collaborative which brings together di-
verse STEM instructors, education researchers, and

social scientists to conduct research and create resources
aimed at fostering the next generation of resilient and
innovative scientists (https://qubeshub.org/community/
groups/flamenet/). Instructors announced the research
opportunity to students either during class, via the
course learning management system, via email, or on so-
cial media. All recruited students were enrolled in a
STEM course at the time of the study. Two hundred
and thirty-five students in this volunteer sample pro-
vided complete surveys and were included in the final
data set. Students in this sample predominantly identi-
fied as female (68.1%) and Caucasian (81.7%), with a ma-
jority describing themselves as STEM majors (90%). A
full breakdown of participant characteristics can be
found in Table 3, column 3.

Instruments

Fear of failure The 25-item version of the PFAI was
employed (Conroy et al. 2002; the original measure can
be viewed in Table S1). Using this measure, we asked
participants to endorse certain beliefs regarding the
likely consequence(s) of failure on a scale of 1 (“I believe
this is never true of me”) to 5 (“I believe this is true of
me all of the time”). This scale was modified from the
original 5-point scale of − 2 “Do not believe at all” to + 2
“Believe 100% of the time” based on anecdotal prelimin-
ary feedback from undergraduate research assistants that
the modified response scale is easier to understand. Evi-
dence of the validity and reliability of this 25-item ver-
sion of the PFAI (Conroy 2001) has previously been
gathered in a general college sample. In that study, Con-
roy et al. (2002) produced a final well-fitting model that
accounted for the five proposed dimensions—fear of
shame or embarrassment (FSE), fear of devaluing one’s
self-estimate (FDSE), fear of having an uncertain future
(FUF), fear of important others losing interest (FIOLI),
and fear of upsetting important others (FUIO)—each of
which consists of a group of five questions that corre-
sponds to the specified dimension, along with the
higher-order overall FF that can be derived from aver-
aging these five subscales. (From here forward, we refer
to these groups of questions as “dimensions” since they
are inseparable from the FF dimensions. When discuss-
ing the mathematical fit of items to these dimensions
resulting from factor analysis, we use the term “factors”.)
Fit statistics for this original model are provided at the
top of Table 4. Internal reliability for this form of the
PFAI has previously been demonstrated to be high, with
Cronbach’s alpha of all twenty-five items at 0.91 and for
the higher-order FF dimension derived by the mean of
the five factors at 0.82 (Conroy et al. 2002; Cronbach’s
alpha is a statistical measure which assesses the degree
to which items on a scale are correlated with each other,
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Fig. 1 Progression of research steps
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with values closer to one indicating stronger relation-
ships. If items on a scale do, in fact, all measure the
same construct, one would expect to see high
consistency as measured by Cronbach’s alpha; Cronbach
1951). In this study, PFAI items were framed in two
ways. In the “general” condition, the PFAI items were in-
troduced by asking students to “consider the way you
feel and act when you face failures and challenges.” The
PFAI items themselves were introduced with the follow-
ing: “For the following questions, please consider chal-
lenges and failures that you face in general. For each
question, indicate how often you believe each statement
is true of you.” By contrast, our “STEM” condition intro-
duced this section of the survey by asking respondents
to “consider the way you feel and act when you face fail-
ures and challenges in your STEM courses”. And the
questions themselves were introduced by reminding stu-
dents to “please consider challenges and failures that
you face specifically in your STEM course(s). For each
question, indicate how often you believe each

statement is true of you.” Students also provided
qualitative responses to a set of questions that asked
them to describe a recent time when they experienced
a failure or challenge (again, either in general or in a
STEM context specifically) and how upsetting they
found this event on a scale from 0 to 10, with 10 be-
ing the most upsetting. These qualitative items are
discussed more in Step 7 below.

STEM anxiety To quantify the overall level of anxiety
surrounding the academic context of STEM courses, we
asked students the following: “On a scale from 0 to 10,
how anxious are you about your performance in your
STEM classes?” Here, 0 indicated “not at all anxious”
while 10 indicated “extremely anxious.” Students utilized
the entire range of possible responses for this question,
with a mean response of 6.37 (SE 0.175; variance 6.670).
Cognitive interviews (see Step 7) were used to assess the
face validity of this question, with students indicating
that they found it simple and straightforward.

Table 2 Order of tests

Sample

Analyses Recruited for validation
study, Summer 2018
(n = 235)

Pulled from existing
intervention study, Fall
2018
(n = 1309)

Pulled from existing
intervention study, Fall 2019
(n = 433)

PEER students across timepoints,
Summer 2018, Fall 2018, Fall 2019 (n =
280)

Step 1 CFA to test existing PFAI
structure (Conroy et al.
2002)
• Table 3, Column 3
(Participants)

• Table 4 (Results)

Step 2 EFA to define new factor
structure
• Table 3, Column 4
(Participants)

• Table 5, Rows 3-5 (Results)

Step 3 CFA to confirm revised
structure
• Table 3, Column 3
(Participants)

• Table 5, Row 7 (Results)

Step 4 CFA to confirm revised structure
in new dataset
• Table 3, Column 5 (Participants)
• Table 5, Row 8 (Results)

Step 5 CFA to confirm revised
structure in original data set
• Table 3, Column 3
(Participants)

• Table 5, Row 9 (Results)

Step 6 CFA to test fit of revised structure among
PEER undergraduates
• Table 3, Column 6 (Participants)
• Table 5, Row 10 (Results)

Step 7 Cognitive interviews to assess face validity
• Table 7 (Participants)
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Procedures
All activities conducted during this and all subsequent
research steps were completed with the approval of the
Emory University IRB (Protocols IRB00105275 and

IRB00114138). Subjects were recruited from STEM
courses over the Spring/Summer 2018 semester. Any
student enrolled in a participating STEM undergraduate
course was eligible to participate. After agreeing to

Table 3 Demographic characteristics of participants

Steps 1 and 5: Initial CFA
sample (Summer 2018; N =
235)

Steps 2 and 3 : EFA
sample (Fall 2018; N =
1309)

Step 4: Second CFA
sample (Fall 2019; N =
433)

Step 6: PEER CFA sample
(Summer 2018, Fall 2018, Fall
2019; N = 280)

Variable Value Frequency (%) Frequency (%) Frequency (%) Frequency (%)

Gender Female 160 (68.1) 888 (68.4) 272 (62.8) 195 (69.6)

Male 52 (22.1) 384 (29.6) 150 (34.6) 81 (28.9)

Non-binary 3 (1.3) 4 (0.3) 4 (0.9) 3 (1.1)

Prefer not to
answer

2 (0.9) 2 (0.2) 6 (1.4) 1 (0.4)

Major1 Biology 103 (43.8) 456 (36.05) - 40 (22.1)

Chemistry 39 (16.6) 100 (7.91) - 15 (22.1)

Engineering 15 (6) 8 (0.63) - 2 (1.1)

Env. Science 10 (4) 4 (0.32) - 2 (1.1)

Pre-health 12 (5) 101 (7.98) - 40 (22.1)

Kinesiology 11 (4.7) 20 (1.58) - -

Mathematics 3 (1.3) 54 (4.27) - 1 (0.05)

Neuroscience 15 (6) 89 (7.04) - 20 (11.05)

Physics 7 (3) 135 (10.67) - 2 (1.1)

Psychology 14 (6) 26 (2.06) - 10 (5.52)

Other 5 (2) 64 (5.06) - 25 (13.81)

Undeclared 1 (0.4) 208 (16.4) - 24 (13.26)

Age 18–20 191 (81.3) 1184 (90.4) 320 (73.9) 227 (81.1)

21–23 37 (15.7) 52 (3.9) 58 (13.4) 26 (9.3)

24 and older 7 (3.0) 64 (4.9) 55 (12.7) 24 (8.6)

Class
standing

First year 68 (28.9) 306 (23.6) 184 (42.5) 112 (40.0)

Second year 63 (26.8) 302 (23.3) 135 (31.2) 112 (40.0)

Third year 41 (17.4) 60 (4.6) 50 (11.5) 31 (11.1)

Fourth year 41 (17.4) 36 (2.8) 31 (7.2) 15 (5.4)

Other 4 (1.7) 6 (0.5) 32 (7.4) 10 (3.6)

Race American
Indian

1 (0.4) 6 (0.5) 3 (0.7) 62 (34.44)

Asian 15 (6.4) 217 (16.7) 115 (26.6) -

African
American

10 (4.3) 67 (5.2) 40 (9.2) 78 (43.33)

Pacific
Islander

4 (1.7) 3 (0.2) 4 (0.9) 7 (3.89)

Caucasian 192 (81.7) 419 (32.3) 243 (56.1) -

Other 4 (1.7) 29 (2.2) 32 (7.4) 33 (18.33)

Latino/
a/x?

No 202 (86) 1148 (88.4) 350 (80.8) 83 (53.2)

Yes 12 (5.1) 124 (9.6) 71 (16.4) 72 (46.2)

Prefer not to
answer

3 (1.3) 13 (1.0) 12 (2.8) 1 (0.6)

aData collection methods for “major” information varied across time point and collection location. Some instructors constrained students to 6-option forced choice
selection (including “Other”), while others allowed students to list their current major as they chose. Major data were not collected in fall 2019. This accounts for
some of the variation in rates of majors presented here
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participate in the study, subjects were randomly assigned
to one of two groups following a planned missingness
design. That is, we intentionally provided only half of
our items to 50% of the sample and the other half of the
items to the other 50%. While this creates a large
amount of missing data, as long as random assignment
is used to decide which participants receive which half
of the questions, responses for the remaining items can
be imputed (Little 2013; Little and Rhemtulla 2013;
Rhemtulla and Little 2012). This method of data collec-
tion was chosen to avoid survey fatigue. Students in this
sample were asked to answer survey items related to the
FF measure discussed in this paper and also to provide
survey data on a larger number of other intrapersonal
constructs of interest (i.e., coping behaviors, growth
mindset). Taken together, asking students to respond to
all of these items would have resulted in a survey
exceeding the recommended length of 10–20 min (Cape
and Phillips 2015; Revilla and Ochoa 2017). To ensure
we collected high-quality data from students on all mea-
sures, a planned missingness design was judged the best
approach. We also randomly assigned participants to ei-
ther the “general” or “STEM” group. The “general”
group received the PFAI items as they were validated by
Conroy et al. (2002). The “STEM” group received
versions of these same items that were preceded by lan-
guage that prompted respondents to consider failures
and challenges in STEM contexts specifically. Both
groups rated the items on a scale of 1 “I believe this is
never true of me” to 5 “I believe this is true of me all of
the time”. We randomly assigned these versions of the
survey to two groups because we wished to avoid survey
fatigue by not asking students to respond to both ver-
sions and because we wished to investigate whether or
not the language prompting students to explicitly

consider STEM contexts influenced FF responses. After
responding to the FF questions, all students were asked
to rate their level of anxiety specifically related to taking
STEM courses. Finally, participants completed demo-
graphic questions. We intentionally placed the demo-
graphic questions at the end of the survey to mitigate
any effects of stereotype threat that can be introduced
by such questions.

Results
Preliminary results

Missingness To confirm that the intentional patterns of
missingness (that is, what data are missing from partici-
pants) created as part of our planned missingness design
(Little 2013; Little and Rhemtulla 2013; Rhemtulla & Lit-
tle 2013) are missing completely at random (MCAR),
Little’s MCAR Test (Little 1988) was computed. Results
confirm that our data are missing at random (□2 (256) =
127, p > .05), and it is appropriate to impute missing
values. Missing values were imputed with five iterations
(Schafer et al. 1997) and the imputed datasets were used
for all further analyses. We calculated estimates separ-
ately for each imputed dataset and then averaged those
estimates to derive final model estimates based on
Rubin’s rules for multiple imputation (Rubin, 1978).

Descriptive analyses Outliers in the dataset were identi-
fied using the outlier labeling method (Hoaglin and
Iglewicz 1987; Hoaglin et al. 1986; Tukey 1977) which
labels identified outliers as “missing” to exclude them
from further analysis without removing them entirely
from a dataset. Visual inspection of skewness and kur-
tosis (George & Mallery, 2016), as well as Shapiro-Wilk’s
testing indicated that our data were not normally

Table 4 Fit statistics for nested confirmatory factor models of the PFAI in a STEM context

Model
[Result for “good fit”]

AIC
[Lower]

RMSEA
(90% CI)c

[< 0.06]

CFI
[> 0.90]

SRMR
[< .08]

Conroy et al. (2002)
5 factors predicting overall FF

Not provided 0.06 (.05–.06) 0.91 0.07

Model A:
Fit of Conroy’s 5 factors to undergrad students in STEM

18,802.92 0.151 0.570 0.121

Model B:
Fit of modified factorsa to undergrad students in STEM

15,247.87 0.150 0.638 0.112

Model C:
Predicting overall FF with modified factors

15,293.97 0.153 0.614 0.120

Model D:
Modified model to predict overall FFb

14,409.09 0.152 0.642 0.116

Model E:
Modified model using STEM-specific items

13,965.28 0.150 0.696 0.126

Notes:a items 1, 2, 3, 9, and 10 dropped in this model; b item 12 dropped in this model; c because an imputed dataset was used, 90% CI for RMSEA were not
computed by the MPlus software. Difference in fit for STEM-specific items was also tested at Models B and C. As fit did not improve significantly, values are not
reported here for parsimony.
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distributed (p < .05; Shapiro and Wilk 1965), so the ro-
bust maximum likelihood ratio (MLR) was the most ap-
propriate for main analyses in MPlus (Asparouhov and
Muthén 2018; Muthén and Muthén 1998-2018). Prelim-
inary analyses also indicated that students in our sample
reported relatively low levels of FF, with dimension aver-
ages ranging from 1.46 (SE = .030; FSE) to 3.30 (SE =
0.30; FUF) on a 5-point scale where higher scores indi-
cate more FF.

Main results
Main analyses were carried out in MPlus v. 8.1 (Muthén &
Muthén,1998-2018). Factor analyses examined the fit of a
variety of nested models, beginning with a CFA of the five-
factor model of FF proposed by Conroy et al. (2002). In ac-
cordance with recommendations from Knekta et al. (2019),
model fit was assessed using Akaike’s Information Criterion
(AIC), Root Mean Square Error Approximation (RMSEA),
Comparative Fit Index (CFI), and Standardized Mean Square
Residual (SRMR). AIC compares each proposed model to a
theoretical “true” model, calculating how far data fit to the
model fall from this theoretical ideal. AIC also allows for
comparison of the fit between models fit to the same sample;
the AIC value for each model will be that respective model’s
distance from the “true” fit for the data. So, the model with
the lowest AIC represents the best fit for those data (Akaike
1998; Kenny 2020). RMSEA values describe the “badness of
fit,” so once again a lower number is preferred. CFI assesses
incremental improvements in model fit above a baseline
model; thus, higher values indicate better fit (Kline 2010;
Taasoobshirazi and Wang 2016). And, finally, SRMR repre-
sents the standardized difference between a predicted correl-
ation among error residuals and the actual observed
correlations. Since a smaller difference between these correl-
ation values would indicate closer convergence between pre-
diction and observation, a smaller SRMR value indicates
good fit (Kline 2010; Taasoobshirazi and Wang 2016). See
Knetkta et al. (2019) for more complete descriptions of how
each metric is calculated and their meaning. Fit statistics for
all models can be found in Table 4, along with cut-off criteria
used to assess goodness of fit. For all models discussed
below, changes made for earlier models are carried over to
later models unless otherwise stated.

Model A: CFA of Conroy’s structure As described
above, Conroy et al. (2002) proposed a five-factor struc-
ture to capture different sources of FF (Table 1). CFA
was used to determine whether items in the college
STEM sample loaded on the factors proposed a priori by
Conroy et al. (2002; i.e. supported the proposed concep-
tual model). Fit statistics suggest that this model has
weak to mediocre fit for students in STEM contexts
(Table 4). Analysis of standardized factor loadings for in-
dividual items indicates that Question # 9 (“When I am

failing, I lose the trust of people who are important to
me“) does not load onto the FUIO factor ( = 0.450, p
> .05) as proposed by Conroy et al. (2002). Further in-
vestigation of beta output provided by the MPlus pro-
gram suggests that, in our sample, the following items
do not load onto any of the proposed factors: 1 (“When
I am failing, it is often because I am not smart enough
to perform successfully”; FDSE), 2 (“When I am failing,
my future seems uncertain”; FUF), 3 (“When I am fail-
ing, it upsets important others”; FUIO), 9, and 10
(“When I am not succeeding, I am less valuable than
when I succeed”; FSE).

Model B: Modified factor structure Based on the results
of Model A, items 1, 2, 3, 9, and 10 were removed from the
item inventory, and the CFA based on Conroy’s PFAI model
was rerun. Model fit improved substantially (see Table 4)
though overall fit was still considered to be “poor” and indi-
vidual factor loadings did not suggest that model fit would
be improved by the further removal of items.

Model C: Using modified factor structure to predict
overall FF Conroy et al. (2002) also hypothesized that their
instrument would explain differences in students’ overall FF.
Model C tests that hypothesis using our modified factor
structure (with items 1, 2, 3, 9, and 10 dropped from their re-
spective dimensions). For this model, an additional step was
added in which, after individual items predicted factor forma-
tion, the factors together predicted overall mean level of FF.
We see (Table 4) that model fit worsens, but not back to the
level of Model A. Also, examination of standardized beta
weights suggests that the negatively coded item 12 (“When I
am failing, I am not worried about it affecting my future
plans“) on the FUF factor is a poor fit for this sample of
undergraduate STEM students when predicting overall FF (□
= − 0.331, p > .05).

Model D: Modified overall model Removing item 12
from the overall model improves model fit (Table 4) and
does not yield any further suggestions for improved
model fit for either the individual composition of factors
or to increase the model’s ability to predict overall FF.

Model E: Modified model with STEM-specific items
Our final model in this step tested our hypothesis that
question wording which primed students to think specif-
ically about STEM contexts when completing the PFAI
survey would lead to a better model fit. To test this, we
took our best-fitting model from our work with the
existing PFAI items (Model D) and substituted data
from our STEM-specific questions. We assessed the ef-
fect of STEM-specific language after finding the best
overall model fit with Conroy’s original items because
we wished to see if this change affected model fit above
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and beyond other modifications. When these STEM-
specific item variants were used, model fit improved to
its highest level. While we would still not classify this as
a strong model fit, it is nonetheless markedly improved
and better represents the population of interest.

Convergent validity Convergent validity of the PFAI in
general—that is, the degree to which FF measured by
the PFAI is correlated with other constructs which, the-
oretically, should be related to FF—has been extensively
addressed by Conroy and colleagues in their original val-
idation protocol (see Conroy et al. 2001; Conroy et al.
2002). Another variable within our dataset which ad-
dresses affective components thought to be related to FF
is STEM anxiety, measured via one question: “On a scale
from 0 to 10, how anxious are you about your perform-
ance in your STEM classes?” Assuming that our refined
model for the PFAI has good convergent validity, we
would expect mean overall FF and STEM anxiety to be
highly correlated. Overall, this sample reported moderate
levels of STEM anxiety (M = 6.37, SE = 0.175). Re-
sponses ranged from 0 to 10 with a variance of 6.670, in-
dicating that this question has sufficient variance to be
used in assessments of convergent validity. Overall FF
obtained by our measure is significantly correlated with
STEM anxiety (r = 0.568, p < .0001), supporting the con-
vergent validity of the modified PFAI.

Brief discussion
Our initial CFA demonstrated that the PFAI best reflects
university STEM students’ fear of failure when the lan-
guage of the survey specifically directs them to consider
their experiences within the STEM academic context.
This use of STEM-specific language significantly im-
proved model fit above the original model; however, it
still did not result in a model that was well-fitting overall
(Akaike 1998; Kline 2010; Taasoobshirazi and Wang
2016). This implies that the underlying model structure
of the PFAI might be inappropriate to assess FF in
undergraduate STEM students. To explore this possibil-
ity, and to find the model structure with the greatest ef-
ficiency for measuring FF in undergraduate STEM
samples, an EFA was conducted next.

Step 2: Exploratory factor analysis (EFA) to define
new model structure
In contrast to the CFA described above, EFA frees indi-
vidual items from any a priori organizational constraints,
allowing them to reorganize into new factors based on
responses of participants, rather than researchers’ pre-
formed hypotheses regarding how the items should clus-
ter together. Thus, compared to CFA, which investigates
whether data “fit” an existing conceptual model, EFAs
suggest new models that best fit the data (Knetka et al,

2019). We hypothesized that EFA with the STEM-
specific items would yield a well-fitting model of the
PFAI for undergraduate STEM students by allowing re-
moval or reorganization of some of the items among
Conroy’s (2001) five proposed dimensions (described
above in “Introduction”) or organization into new factors
representing different dimensions. Our justification of
this hypothesis is that students in STEM contexts may
view failures differently than other undergraduate stu-
dents. STEM professionals view failure in unique ways
not generalizable to all populations (Simpson & Maltese,
2014), and STEM students describe FF as occurring as a
result of specific STEM contexts and not as a more gen-
eral cross-context fear (e.g., Ceyhan and Tillotson 2020;
Cooper et al. 2018; Onwuegbuzie 2004), supporting the
idea that FF is highly context-specific (Cacciotti 2015).
Thus, the constructs proposed for other undergraduate
populations may require revision for STEM undergradu-
ate populations.

Participants and procedures
In accordance with best practices in psychometrics, es-
pecially with regard to statistical power (Knekta et al.
2019), data for this EFA were acquired from a new data-
set that included approximately 1800 undergraduate
STEM students. These participants were drawn from the
same research network as those in “Step 1: Confirmatory
factor analyses (CFAs) of existing models,” which was
expanded to include more minority serving and 2-year
institutions. These data were collected in Fall 2018 as
part of a pre-survey completed by students within the
first month of the semester, prior to the first major as-
sessment in their participating STEM course. The vast
majority of courses included in this sample were trad-
itionally targeted for first- or second-year students. Once
the data were cleaned (e.g., outliers truncated, cases with
majority missing data deleted), a sample of 1309 college
students in STEM contexts remained for analyses (Hoa-
glin and Iglewicz 1987; Hoaglin et al. 1986, and Tukey
1977). Demographics for this sample can be viewed on
Table 3, column 4. Because the STEM-specific items
provided a better fit in the initial CFA study (see “Step
1: Confirmatory factor analyses (CFAs) of existing
models”), students in this study were only asked to
complete versions of the original twenty-five items of
the PFAI which had been modified to be STEM-specific.
Independent samples t-tests comparing the key demo-
graphics of this sample to the sample in our first ana-
lyses found no significant differences between
participants on race, parents’ level of education, or re-
ported STEM anxiety (all p’s > .05). There were signifi-
cant differences observed between participants on age,
class standing, and gender, with participants in this sam-
ple tending to be older, less academically advanced, and
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male. However, these differences were relatively small
(see Table S2). Table 3 displays frequencies of other key
demographic variables for all samples.

Results
Eigenvalues and Scree plots are first steps in EFA that
are used to determine how many factors a researcher
should consider including in their measurement model
by exploring how much variance might be explained by
the addition of more factors. Eigenvalues provide a basic
measure of how much unique information each assumed
factor provides. For that reason, factors with higher ei-
genvalues are considered more useful; in general, re-
searchers should only include factors with eigenvalues
above one in their models (Knetka et al., 2019). Scree
plots help provide a visual aide for this determination by
plotting eigenvalues against the number of factors. Re-
searchers should limit the number of factors at the point
in the Scree plot where the curve experiences its first
sharp drop (Cattell 1966; Knetka et al., 2019). These
general guidelines can be widely interpreted and are
meant only to help researchers limit the beginning num-
ber of factors considered for EFAs. It is important to
carefully examine the quantitative fit statistics (e.g., AIC,
RMSEA) generated for all potential models before mak-
ing conclusions regarding the optimum number of fac-
tors or goodness of fit for any model. It is also
important to consider the theory underlying the gener-
ation of survey items and the ultimate proposed use of a
measurement (Knetka et al., 2019). Exploration of the
Scree plot (see Fig. 2) and eigenvalues suggested that a
model having between one to five factors would be the
most effective for this sample of STEM undergraduates.
This determination was based on established criteria of
visual inspection of the Scree plot for initial leveling of

slope (Kaiser 1960) and eigenvalues greater than 1.0
(Cattell 1978). MPlus v. 8.1 (Muthén & Muthén, 1998–
2018) was used to successfully carry out EFA for each of
the proposed factor structures. Model fit was assessed
using Akaike’s Information Criterion (AIC), Root Mean
Square Error Approximation (RMSEA), Comparative Fit
Index (CFI), and Standardized Mean Square Residual
(SRMR) as described in the “Results” section of “Step 1:
Confirmatory factor analyses (CFAs) of existing models,”
above (Kline 2010; Taasoobshirazi and Wang 2016).
Model fit statistics are in Table 5.
Both the four-factor model and five-factor model pro-

vide a good fit of the PFAI items for STEM under-
graduate students (Table 5). Therefore, to further
investigate fit, we examined the factor structures them-
selves. Any item that loaded onto a factor with a load-
ing above 0.40 and a distance of at least 0.20 from any
cross-loadings was retained on that factor (Masaki
2010). Using these criteria, items that failed to load
clearly onto a unique factor were dropped from the
measure. From this evaluation of the factor structures,
the four-factor model emerged as both conceptually
and practically stronger than the five-factor model, as
the five-factor model contained two factors having only
one item each and a total of twelve dropped items. In
contrast, the four-factor model required dropping only
ten items, and the remaining fifteen PFAI items were
more evenly distributed across factors that echo the
original dimensions proposed by Conroy et al. (2001).
Our revised form of the PFAI can be viewed in Fig. 3,
and the factor loadings, R2, and residual variances for
the four-factor model are displayed in Table 6. Correla-
tions among latent factors can be seen in Table S3 and
are within acceptable bounds (Brown 2015; Watkins
2018).

Fig. 2 Scree plot for determining number of factors in EFA
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Brief discussion
Use of EFAs allowed us to further refine the PFAI for use
in college-aged STEM student samples. Our best-fitting
model significantly reduced the number of items from
twenty-five to fifteen, which may aid with increasing com-
pliance and decreasing cognitive load when surveying
college-aged STEM students (reviewed in Peytchev and
Peytcheva 2017). Based on a series of qualitative cognitive
interviews with STEM undergraduates (see Step 7, below),
it appears that several of the dropped items contained

words or phrases that made them unclear or ambiguous
to students. One dimension, FDSE, contained items with
the words “talent,” “hate,” and “not in control” to describe
situations in which students might devalue their own self-
estimate. In cognitive interviews, students objected to
these words, and ultimately, FDSE was not supported by
factor analysis as a unique dimension. It is likely the word-
ing of items did not align with STEM students’ views of
themselves when responding to failures. Interestingly, one
item was retained in the scale from the original group of

Table 5 Model fit statistics

Model [result for “good fit”] AIC
[Lower]

RMSEA (90% CI)
[< 0.06]

CFI
[> 0.90]

SRMR
[< 0.08]

EFA for new model structure

3 Factors 88,741.92 0.080 (0.077–0.083) 0.877 0.044

4 factors 87,379.252 0.051 (0.048–0.055) 0.954 0.023

5 factors 87,162.627 0.047 (0.043–0.051) 0.965 0.019

CFA of new model structure

EFA sample
(Fall 2018)

52,459.976 0.054 (0.049–0.060) 0.960 0.040

Second CFA sample
(Fall 2019)

16,733.419 0.060 (.051–0.070) 0.964 0.049

Initial CFA sample
(Summer 2018)

52,459.98 0.054 (0.049–0.060) 0.960 0.040

PEER sample 5971.960 0.071 (0.051–0.090) 0.936 0.058

Fig. 3 Modified version of the PFAI
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questions for the FDSE dimension. “When I am failing, I
blame my lack of talent,” now loads onto the FUF factor.
This suggests that perhaps STEM students at the college
level view talent as a potential advantage (or stumbling
block) for future success, rather than a reflection on their
current self-estimate.
Ultimately, four of the five Conroy-proposed dimen-

sions were still represented in the final fifteen-item re-
vised model, and a majority of items present loaded onto
their “original” dimension (Fig. 3), with four items

assessing Fear of an Uncertain Future (FUF), five items
assessing Fear of Important Others Losing Interest
(FIOLI), three items assessing Fear of Upsetting Import-
ant Others (FUIO), and three items assessing Fear of
Shame and Embarrassment (FSE). It is worth noting that
several residual variances for the individual items in the
model remain high (Table 6). This suggests that there is
still some variability in students’ responses to the PFAI
items that is not explained by the current model. Thus,
it is possible that more factors could remain to be

Table 6 Factor loadings for four-factor model of PFAI

Factor loadings a R2 Estimated residual
variance

Item FUF FIOLI FUIO FSE

When I am failing, my future seems uncertain. .795 .393 .313 .468 0.74 0.380

When I am failing, I blame my lack of talent. b .714 .424 .307 .502 0.57 0.533

When I am failing, I believe that my future plans will change. .814 .366 .343 .417 0.77 0.298

When I am failing, it upsets my “plan” for the future. .804 .368 .409 .486 0.76 0.320

When I am not successful, people are less interested in me. .413 .807 .461 .489 0.72 0.322

When I am not successful, people seem to want to help me less. .301 .733 .406 .292 0.70 0.493

When I am not successful, people tend to leave me alone. .323 .736 .411 .365 0.71 0.461

When I am not successful, some people are not interested in me anymore. .361 .846 .492 .424 0.84 0.268

When I am not successful, my value decreases for some people. .411 .826 .462 .476 0.74 0.303

When I am failing, it upsets important others. .280 .276 .689 .260 0.81 0.563

When I am failing, important others are not happy. .273 .471 .820 .329 0.92 0.332

When I am failing, important others are disappointed. .304 .515 .875 .413 0.78 0.203

When I am failing, it is embarrassing if others are there to see it. .446 .412 .439 .778 0.75 0.364

When I am failing, I worry what others think about me. .489 .446 .378 .855 0.84 0.242

When I am failing, I worry that others may think I am not trying. .417 .348 .379 .698 0.50 0.514

Dropped itemsc

When I am failing, it is often because I am not smart enough to perform
successfully.

.510 .263 .206 .293

When I am failing, I expect to be criticized by important others. .416 .450 .618 .498

When I am failing, I am afraid that I might not have enough talent. .752 .386 .265 .588

When I am failing, I lose the trust of people who are important to me. .380 .655 .521 .227

When I am not successful, I am less valuable than when I succeed. .554 .632 .413 .550

When I am failing, I am not worried about it affecting my future plans. d −
.254

.178 −
.029

−
.149

When I am not successful, I get down on myself easily. .598 .291 .290 .691

When I am failing, I hate the fact that I am not in control of the outcome. .512 .291 −
.233

.599

When I am failing, I believe that everybody knows I am failing. .470 .533 .403 .720

When I am failing, I believe that my doubters feel they were right about me. .462 .622 .411 .675

Cronbach’s alpha .832 .854 .818 .730

R squared .482 .606 .481 .625
aFactor loadings over .50 appear in bold. Factor loadings below .30 appear in lighter gray font
b This item original loaded on the FDSE subscale; all other items load onto their original subscale
cItems were dropped from the scale for one of two reasons: (1) no factor loadings were above .40 or (2) the difference among factor loadings above .40 was less
than .2, indicating too high a degree of cross-loading
dThis item is reverse scored (i.e., higher scores actually indicate lower FF, contrary to all other items on the scale)
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extracted (Pett et al., 2003; Watkins 2018). More qualita-
tive work within a STEM context could elucidate add-
itional FF dimensions relevant for STEM undergraduates
which could augment the current instrument in future
iterations of scale development.

Steps 3–5: CFAs to confirm fit of new factor
structure
After determining a new factor structure, it was import-
ant to verify that the structure fit well in more than only
the sample of STEM students used to conduct the EFA.
We subsequently performed a series of CFAs using simi-
lar methods to those described above on this newly sug-
gested structure.

Step 3
We first verified the fit of our model within the sample
of students used for the EFA in Step 2. This sample in-
cluded 1309 students recruited from the FLAMEnet re-
search network during Fall 2018 (Table 3, column 4).
CFA within this sample yielded excellent model fit
(Table 5, row 7).

Step 4
We next wanted to confirm the revised factor structure
in a separate sample of STEM undergraduates to verify
the stability of the model. FLAMEnet participants during
Fall 2019 provided data on 433 students (see Table 3,
column 5 for demographics). This analysis also proved
to have excellent fit (Table 5, row 8).

Step 5
Finally, we wanted to return to our original sample of
235 students recruited during Summer of 2018 (Table 3,
column 3) to see if the revised model provided good fit
given that our efforts with CFA in “Step 1: Confirmatory
factor analyses (CFAs) of existing models” improved
model fit significantly but did not reach the threshold of
good fit. The model demonstrated excellent fit in this
sample as well (Table 5, row 9).

Brief discussion
We conducted three separate CFAs to verify that the
new model structure for the PFAI indicated by the EFA
(Step 2) could be replicated in multiple samples of
STEM undergraduates. In all three cases, fit statistics in-
dicated excellent model fit. Independent samples t-tests
among the various samples identified some significant
differences among demographic variables (see Table S2).
These differences, while statistically significant, were
small, and the model’s continual good fit despite them
demonstrates its robustness as an assessment tool across
undergraduate STEM samples.

Step 6: Model fit among persons excluded
because of their ethnicity or race (PEERs)
The work described thus far represents a novel presenta-
tion of the PFAI which we have shown to be a stronger
fit for undergraduates’ actual conceptualization of FF in
STEM contexts. While work aimed at improving the val-
idity and applicability of interventions and assessment
represents a worthy goal of service for all students, it is
especially salient for PEER students, who are more likely
to leave STEM academic programs (Asai 2020; National
Science Board 2018; Steele 1997; Stinebrickner and Sti-
nebrickner 2014). Factors such as FF are likely to be im-
portant leverage points for improving STEM students’
ability to persevere through academic challenges and
failures. The implied long-term impact of aligning peda-
gogical practices to reduce FF is increased inclusion and
success in STEM education and careers (e.g., retention
within STEM majors, Nelson et al. 2019). For the PFAI
to be an effective assessment tool, then, it is critically
important to ensure that the same factor structure is
valid for people at higher risk of leaving STEM, such as
PEERs (Asai 2020). Additionally, previous intervention
studies with psychological constructs that influence stu-
dents’ responses to challenge and failure (e.g., mindset)
suggest that these interventions may be most effective
for PEER students (Aronson et al. 2002; Fink et al. 2018;
Yeager et al. 2016). Thus, we conducted separate model
fit analyses with a sample of only PEER undergraduate
STEM students to explore how this instrument func-
tions when assessing this critically important population.

Participants and procedures
Participants for this analysis were drawn from the same
dataset of approximately 1309 undergraduate STEM stu-
dents described in the previous EFA section (Step 2),
along with two other datasets collected in Fall 2019 (Step
4) and Summer 2018 (Step 1). While these data were
pulled from surveys collected at different times, there
were no differences in the method by which surveys
were presented. These data were then coded to classify
each student as either a “PEER” (1) or “not a PEER” (0).
Any student who self-identified as “White/Caucasian” or
“Asian” on a demographic survey question was not con-
sidered a PEER; all other students were coded as a PEER.
This classification was based on data from the NSF
which indicates that Asian students are not typically un-
derrepresented in STEM and health-related sciences in
the USA (Asai 2020; National Science Foundation 2020).
In total, 280 PEER students were identified. Full demo-
graphics for this sample are included in Table 3, column
6. In our sample, PEER students identified as belonging
to African American or Black; American Indian or Al-
askan Native; Arabic or Middle Eastern; Hispanic or
Latinx; and/or some other racial or ethnic group. All
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further analyses described in this section have been con-
ducted with only those students classified as PEERs. In-
dependent samples t-tests (see Table S2) verify that this
combined sample of PEER students contained a signifi-
cantly higher number of PEER students than the samples
from which it was drawn (by an average factor of 10).
Small differences existed among other demographics,
but in general PEER demographics were intermediate or
roughly equivalent to other samples (Table S2) with all
differences being small. The only difference which might
also have impacted students’ FF was that PEER students
reported that their parents received a lower overall level
of education compared to students in our other samples.
This has often been used as a proxy for socioeconomic
status (SES; Pascarella and Terenzini 1991; Snibbe and
Markus 2005) and could mean PEER students are under
financial stress, making them more likely to fear failure.
However, PEERs, in general, are more likely to hail from
first-generation or lower SES backgrounds in the USA
(Cullinane 2009; Kuh et al. 2006); thus, this observed dif-
ference is not surprising. Indeed, differences in educa-
tional background that correlate with race and ethnicity,
in part, contribute to the need to understand, study, and
create measures specific to PEER groups. PEER students
also reported equivalent levels of STEM anxiety, which
suggests they are not, overall, more anxious about STEM
courses than non-PEER STEM students.

Results
MPlus v. 8.1 (Muthén & Muthén,1998-2018) was used
to conduct CFA for the four-factor, 15-item model de-
scribed above (see Tables 4 and 5). Model fit was
assessed using AIC, RMSEA, CFI, and SRMR as de-
scribed in the “Results” section of “Step 1: Confirmatory
factor analyses (CFAs) of existing models” above (Kline
2010; Taasoobshirazi and Wang 2016). Model fit statis-
tics are displayed in Table 5, row 10. All fit statistics are
within acceptable ranges for a “good” fitting model
(Kline 2010; Taasoobshirazi and Wang 2016). While the
RMSEA value of 0.071 slightly exceeds our established
criterion of RMSEA < 0.06 for a “good” fitting model,
the 90% confidence interval does include this value. In
addition, disagreement abounds regarding appropriate
cut-off points for fit indices (e.g., Hayduk et al., 2007),
with some researchers arguing that RMSEA can rise as
high as 0.08 before a model is considered a “poor” fit
(MacCallum et al. 1996). RMSEA, along with SRMR, is
also the fit index perhaps most susceptible to inflation
with small sample sizes (Kenny et al. 2015). The differ-
ence in sample size between samples in Step 2 (N =
1309 in the full EFA) and Step 6 (N = 280 in our CFA
with PEER students) may partially explain the increase
in RMSEA.

Brief discussion
By conducting this sub-analysis, we demonstrate that
our 15-item modified form of the PFAI does provide a
statistically good fit for PEER students in STEM. Given
past research on both the disproportionate difficulties of
pursuing a STEM career as a PEER student and the in-
creased effectiveness of interventions for PEER students
(e.g., Sisk et al. 2018), this implies that the modified
PFAI could be an especially powerful assessment tool for
future research. More research is needed to assess if this
is a broad effect across all classes of underrepresented
and excluded identities. Our sample was restricted to ra-
cial and ethnic exclusion and, even then, all possible
identities were not represented (e.g., we did not collect
data on subgroups within the broad category “Asian”).
In addition, other types of underrepresentation and
exclusion, such as gender, sexual orientation, first-
generation status, and religious affiliation, likely influ-
ence FF and may affect responses on the PFAI. Future
studies should investigate the fit of our modified PFAI
among these groups and for students with identities that
intersect multiple underrepresented groups.

Step 7: Cognitive interviews
Cognitive interviews were conducted to assess face valid-
ity of all twenty-five items proposed by Conroy et al.
(2001). Face validity describes the extent to which a test
or survey measures what it purports to measure. Cogni-
tive interviews are an excellent way to assess face validity
of survey questions measuring latent intrapersonal con-
structs because they allow the researcher to directly ask
participants about their interpretation of survey items
and to then assess whether this interpretation matches
with the intended purpose of the item. They also assess
participants’ understanding of the content of the instru-
ment in addition to elucidating what the participant is
thinking and feeling while responding, which can often
influence the valence of responses (Willis 2015). For our
study, we used cognitive interviews as the last step in
our data collection to (a) check the face validity of our
items (were the items interpreted by STEM undergradu-
ates as we intended), (b) help elucidate potential reasons
that certain items did not have good fit in our CFA and
EFA analyses, and (c) provide clarity and additional in-
formation about how students were interpreting cer-
tain phrases that were more ambiguous in the PFAI
items.

Participants and procedures
In accordance with results from our initial CFA (Step
1), students who participated in cognitive interviews
were asked to consider the wording of the PFAI ques-
tions specifically in the context of their STEM
courses and research (e.g., “For the following
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questions, please consider challenges and failures that
you face specifically in your STEM course(s) and re-
search”). Eleven students completed interviews of ap-
proximately 20 min each via Zoom in return for a
$20 Amazon gift card. The research opportunity was
announced to students by FLAMEnet instructor part-
ners. Interested students completed an initial screen-
ing questionnaire. From this information, the research
team selected students to participate in a deliberate
attempt to achieve a sample with approximately equal
gender and racial distribution and who represented
STEM fields similar to those seen in our larger sam-
ple(s). Demographic characteristics of these students
are described in Table 7. During these interviews, stu-
dents were asked (a) if the meaning of each question
was clear and how they interpreted the question, (b)
if answer choices seemed appropriate, (c) if there
were any suggestions for improving the question, and
(d) if they had any other thoughts. In addition, stu-
dents were asked to clarify their thought process re-
lated to the somewhat ambiguous phrase “important
others,” which appears in many of the items (e.g.,
“Which specific people come to mind when they hear
this phrase?” “Is it the same or different for each
question which uses this phrase?” etc.). Students were
also asked to provide their thoughts on three ques-
tions added by the researchers prior to the PFAI
items on the survey. These items asked respondents

to describe a time when they recently encountered a
challenge or failure in their STEM course(s) and then
to rate how upsetting they found that event on a
scale from 0 to 10, with 10 being the most upsetting.
Students were also asked to report how anxious they
were about their performance in their STEM
course(s) on a scale from 0 to 10, with 10 indicating
the highest levels of anxiety (see “STEM anxiety”
under “Step 1: Confirmatory factor analyses (CFAs) of
existing models”, above).

Results
Overall, students found the survey instructions clear
and appropriate. Students reported that our additional
questions, which asked them to describe a recent
challenge or failure in a STEM context and to rate
how upsetting that experience was, along with their
general levels of anxiety in STEM contexts, did not
prompt any confusion, discomfort, or concern during
the interviews.
Student responses to the ten items dropped

through EFA (Step 2) both support the removal of
these items from the measure and provide some ex-
planations for why these items may not fit well for
students in undergraduate STEM contexts. With a
majority of these items, there appear to be specific
words or phrases that generate confusion for the re-
spondent. For example, with item 7, “When I am

Table 7 Demographic characteristics of participants in cognitive interviews

Student1 Gender Age Class
standing

Major Race STEM anxiety (0–
10)

CE Male 21–
23

4th Year Chemistry White or Caucasian 4

DQ Male 18–
20

4th Year Biology White or Caucasian 1

HS Female 18–
20

3rd Year Integrative Physiology; Language
Sciences

White or Caucasian 3

HA Male 18–
20

2nd Year Chemistry; Psychology Asian 4

LF Female 21–
23

4th Year Nuclear Medicine American Indian or Native Hawaiian;
Black or African American

10

MZ Female 21–
23

4th Year Engineering Black or African American 6

MB Female 21–
23

4th Year Psychology Asian 9

PO Male 18–
20

3rd Year Biology American Indian or Native Hawaiian;
Black or African American

8

PW Male 18–
20

3rd Year Chemistry Black or African American 9

UN Female 18–
20

3rd Year Chemistry White or Caucasian 6

VH Female 21–
23

4th Year Engineering Management Black or African American 4

1Student pseudonym initials follow quotes from cognitive interviews
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failing, I am afraid that I might not have enough tal-
ent,” students expressed hesitation with the word
“talent,” especially since they felt it did not describe
STEM contexts.

Why “talent”? I would expect to see “intelligence.”
I’m not used to thinking about talent in this context
[science and STEM].—CE

Talent—is that specific for that subject? It’s not as
clear as “smart enough”? Talent is
associated more with singing, dancing, etc.”—MB

Similarly, for item 16, “When I am failing, I hate the
fact that I am not in control of the outcome,” students
objected to the use of “hate,” often stating that hate was
too “strong” a word. They also felt that “not having con-
trol” was inappropriate in this context.

My initial reaction is that you’re always in control a
little bit; I just don’t think anyone is not in control
of the outcome. Is there a different way to word
this?—CE

For the other dropped items, students expressed simi-
lar objections to specific words or phrases they found
confusing.
General themes in students’ interview responses also

provide important insight into how students interpreted
the survey items. Throughout the measure, the item
stems “When I am failing” and “When I am not succeed-
ing” are alternated and, presumably, are thought to be
synonymous. However, students said that they interpret
these two phrases differently and would actually have
responded to some questions differently, had the oppos-
ite stem been used.

“Not succeeding” is more broad than “failing.” Fail-
ing is an “F” vs. not succeeding is not getting
straight 100 s when [you] wanted to. Depending on
what your standard was for “succeeding,” it might
change [your] response.”—UN

One student expressed that these changing stems were
useful because they could respond about a broader range
of experiences instead of only responding about the
more extreme scenario of failing, which they narrowly
defined as getting an “F.”

I like the changing stems because ‘failing’ and ‘not suc-
ceeding’ are two different things. You can ‘not succeed’
without ‘failing’. You could just be doing not as good as
you thought you could do. [Getting a] ‘B’ instead of an

‘A’. [You’re] not failing though, because it’s not an ‘F’. I
like that both are assessed with these questions.—PO

This conflict can especially be seen in student responses
to item 10, the first time that the phrase “not succeeding”
is introduced as an alternative question stem to “failing” in
the original Conroy structure: “When I am not succeed-
ing, I am less valuable than when I succeed.”

Wording change to ‘not succeeding’ is weird. I had
to read it twice.—MB

This change could explain why this item was one of
the ten items dropped by EFA. Multiple students
expressed confusion at this word change and a need to
reread the question. However, as indicated by the above
students’ responses, students were generally able to in-
terpret this phrase after considering it and used it to
broaden the scope of scenarios they responded about.
Finally, these interviews help provide insight into the

identities and roles of individuals the students called to
mind when they encountered the phrase “important
others.” Interestingly, student responses suggest that the
specific people brought to mind by this phrase may
change depending on the actions being attributed to
those important others. When important others were
described as losing interest (e.g., items 11 or 21), stu-
dents described current or future professors, research
supervisors, and employers (“they may ‘give up’ on
you”—CE) or friends and classmates (“maybe [they]
wouldn’t want to study with you anymore”—LF). De-
scribing important others as upset prompted students to
think more broadly, with answers including professors,
family, and friends. However, the language of some of
these items specifically pointed students towards family.
For example, item # 3, “When I am failing, it upsets im-
portant others,” elicited the wide range of responses pre-
viously mentioned. However, item # 19, “When I am
failing, important others are disappointed,” keyed stu-
dents into thinking more specifically of “mostly family
and relatives/caretakers” (PW). Similarly, item 6, “When
I am failing, I expect to be criticized by important
others,” was largely associated specifically with instruc-
tors and others with academic authority such as
“teachers, professors, and mentors” (CE) and also “aca-
demic advisors, tutors, etc.” (MZ). In general, it appears
that the most salient “important others” are brought
to mind for various aspects of the STEM academic
context with these items. That is, students tend to
think of the important others that are most likely, in
their estimation, to experience a given emotion or re-
spond in a specific way to their failures or lack of
success.
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Brief discussion
Overall, results from our cognitive interviews support
the general structure of the revised survey. There were
no major confusions or issues with instructions or over-
all question wordings. Student responses supported the
statistical decision to remove dropped items. In explor-
ing student responses to items involving “important
others,” we found that students may think of different
people depending on the particular aspects of the STEM
context that are evoked by the action phrases of the item
(e.g., “criticize” vs. “upset” vs. “disappoint”). This ability
of items to draw on the most salient people in students’
minds grants flexibility to these questions and reduces
concerns that the phrasing of “important others” might
be restrictive or otherwise confusing for respondents.
This phrasing allows students to consider a broad range
of relationships and histories among an individual stu-
dent and those they consider to be “important.” How-
ever, it restricts survey interpretation in some ways
because we cannot know the exact identity of the “im-
portant other” that comes to mind for students. We can
only assume, based on these results, that that important
other is an important person that is also likely to be per-
ceived by the student as responding in accordance with
the question language (e.g., being disappointed, upset,
critical). Finally, these interviews suggest that some stu-
dents do not view the phrases “when I am failing” and
“when I am not succeeding” as interchangeable. How-
ever, this may, in fact, be a benefit of the measure. In
most cases, students view “failing” as more negative,
damaging, and permanent than “not succeeding.” By
using the more mild “not succeeding” items, this meas-
ure may allow one to assess FF (or fear of not perform-
ing to a specific standard) in students who have rigid
definitions for what constitutes “failure.”

Limitations
As with any research aimed at instrument validation,
this work has several limitations. A priori power analysis
using GPower 3.0 (Erdfelder et al. 1996) indicated that a
sample size of 500 would be ideal for our initial planned
CFA. While we recruited close to 500 participants in
Step 1 (N = 423), only 54% of these participants (N =
235) provided data that were complete enough for ana-
lysis. This sample size limits our power to detect the
small yet meaningful differences (Little 2013), which are
increasingly recognized as large effects in the educa-
tional community (Kraft 2020). This may have affected
model fit in our initial CFA, as fit indices are influenced
by sample size (The precise effect varies by fit index;
Kyriazos 2018). However, since our total sample for the
initial CFA still exceeded the level at which the most
conservative fit statistics begin to be affected (n = 200)
and our CFA model had many indicators estimating

each factor (5 items per factor in the original model), it
is unlikely that our sample size influenced fit statistics to
such an extent that erroneous conclusion were drawn
(Boomsma and Hoogland 2001; Marsh and Hau 1999).
In addition, our knowledge of likely recruitment difficul-
ties led to our choice to use a planned missingness de-
sign (Little and Rhemtulla 2013; Rhemtulla & Little
2013), which resulted in the imputation of large sections
of our data. This limitation is not present in our EFAs,
which had a much larger sample size of 1309 and in-
volved no data imputation. Likewise, our samples for the
CFAs of our modified factor structure in a novel mixed
sample and PEER-only sample did not involve multiple
imputation or planned missingness. However, they both
fell short of 500 participants (N = 433 and N = 280,
respectively).
All of our mixed samples (used for Steps 1–5 and 7)

contained low levels of academic, racial, and gender di-
versity. In particular, our samples contain a majority of
students identifying as female. While women do cur-
rently comprise approximately half of the undergraduate
STEM population and these percentages are higher in
the life sciences (National Science Board 2018), female
students are still likely overrepresented in our sample.
While we were able to conduct a separate fit analysis for
PEER students, racial and ethnic diversity of the other
samples overall were not completely representative of
national trends (U.S. Department of Education, 2012)
and there may be finer grained variations between stu-
dents from different racial and ethnic groups that our
data are not able to elucidate. In addition, in our PEER
analysis Asian students were treated as non-PEERs based
on NSFs’ definition of Asian as not underrepresented in
STEM. While this is true for the broad category, it does
not take into account different Asian subgroups (e.g.,
Korean, Vietnamese) which may be underserved and ex-
cluded in STEM. If the goal is to assess interventions
which would target underserved populations in STEM, it
is especially important that assessment measures, such
as the PFAI, accurately assess members of all under-
served populations. Our investigation of the modified
PFAI fit for PEERs starts this, but only scratches the sur-
face. Future studies of the utility of the modified PFAI
should consider nuances among PEER groups and other
types of underserved groups (e.g., first-generation stu-
dents). In addition, our sample contained a majority of
Biology and Chemistry students and did not represent as
many students from other STEM disciplines (e.g., Phys-
ics, Geoscience, Computer Science, Psychology). This
should be taken into account when interpreting the re-
sults of this work. Also, a significant majority of partici-
pants across all samples reported pursuing a STEM
major (e.g., Biology, Chemistry, Engineering). While the
language modifying the PFAI is not specific to STEM
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majors and simply asks respondents to consider their re-
sponses to failure and challenges within STEM contexts,
which may be equally applicable to STEM majors and
students pursuing other majors who enroll in STEM
classes to fulfill graduation requirements, it is nonethe-
less possible that the reason for enrolling in the course
influences students’ goals within the STEM context and
affects their responses to the PFAI. Future work should
more carefully consider this possibility.
Finally, none of these samples were randomly selected.

Participation was voluntary, with announcements of the
research opportunity disseminated by instructors who
value good pedagogy and may have previously encour-
aged more adaptive outcomes (like lower FF) in their
classrooms. This, combined with possible self-selection
of the most motivated or achievement-driven students
among these classrooms, may have biased our partici-
pant group. However, our concerted efforts to collect
data across multiple disciplines and multiple institutions
representing diverse contexts may have partially miti-
gated this selection bias.

Discussion
The aim of this study was to evaluate, revise, and present
a modified version of an existing instrument, the PFAI,
for STEM undergraduate populations. This work is par-
ticularly important since prior evidence suggests that FF
may contribute to STEM student procrastination
(Onwuegbuzie, 2004; Zhang et al., 2018), threaten motiv-
ation (Ceyhan and Tillotson 2020), and even lead to at-
trition from STEM (Nelson et al., 2019). Our results
support the modification of the original version of the
PFAI to effectively measure STEM-specific FF. Our ana-
lyses supported a more parsimonious reduced scale: fif-
teen items as opposed to twenty-five items and four
factors corresponding to different dimensions as op-
posed to five. In addition, we found support for the hy-
pothesis that STEM-specific items provide the best fit
for STEM undergraduate students. Notably, our reduced,
STEM-specific scale functions well for both PEER and
non-PEER samples and has good face validity. We also
present evidence that our reduced, STEM-specific scale
estimates different levels of FF in STEM student samples
than the original Conroy measure—a finding supporting
the importance of the scale’s revision and modification.
Our results can be used to guide the use and interpret-
ation of our new STEM-specific version of the PFAI
within STEM undergraduate contexts.

A reduced, more parsimonious, version of the PFAI
Shorter, more parsimonious scales are generally pre-
ferred as they help to mitigate survey fatigue, improve
response rates, and increase measure accuracy (reviewed
in Peytchev and Peytcheva 2017). Based on our factor

analyses, we were able to drop ten of Conroy’s original
twenty-five items, including one entire dimension
(FSDE) from the measure, resulting in a shorter, more
parsimonious, scale of fifteen items. Our final best-
fitting model of the PFAI specifically includes the FUF,
FIOLI, FUIO, and FSE scales. We assert that Conroy’s
(2001) original definitions of these dimensions continue
to be appropriate for use in STEM populations since our
cognitive interviews indicated that the items retained in
the scale had reasonable face validity.
After our final examination of the EFA, the FDSE di-

mension proposed by Conroy et al. (2001) did not
emerge among the responses of STEM undergraduates.
This may mean that, within STEM academic contexts,
undergraduates are not worried about damage to their
self-estimate as a result of failure. However, this is not
well supported in the literature, which implies that stu-
dents who identify with a field of study may experience
lower self-efficacy as a result of STEM failures (Bandura
et al., 1999; Pajares 2005). Alternatively, it could suggest
that the current PFAI items for this dimension (e.g.,
“When I am failing, I am afraid that I may not have
enough talent.”) do not accurately articulate threats to
students’ self-estimate within STEM contexts. Indeed,
responses to cognitive interviews support this latter
view, as students expressed confusion over considering
“talent” in regard to STEM, as opposed to a more arts-
based environment. Several studies provide evidence that
people have different views of whether “talent” or similar
attributes such as “brilliance” are determinants of suc-
cess in certain fields (Leslie et al. 2015; Storage et al.
2016). It could be that, for the STEM fields included in
this study, “talent” is not seen as a determinant of failure
or success, and therefore, it did not make sense when in-
cluded in some items. However, it is of note that one
item that was originally on the FDSE factor (“When I
am failing, I blame my lack of talent”) loaded onto the
FUF factor based on STEM students’ responses. So,
while some students were uncertain if “talent” was the
right word to use when discussing science, their re-
sponses to the survey nevertheless indicate that feeling
as if they possess a lack of talent in STEM contexts is
linked to future uncertainty. Additional studies could ad-
dress whether STEM students do, or do not, experience
fear of devaluing their self-estimate when experiencing
STEM failures and how students might describe this
using words other than “talent” in order to generate po-
tential new items within this dimension.
Interestingly, while all of Conroy’s other proposed di-

mensions still emerged from students’ responses, we
noted that items dropped from the scale often included
items with particularly strong and direct wording (e.g.,
“When I am failing, I expect to be criticized by important
others” or “When I am failing, I believe that everybody
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knows I am failing). Responses to such questions may
have been impacted by individuals’ tendency to, know-
ingly or unknowingly, underreport thoughts, feelings, or
behaviors which run contrary to established social norms
or are perceived to invade their privacy (Gnambs and
Kaspar 2014). For example, Fisher (1993) showed that
social desirability bias in survey responses was affected
by direct versus indirect questioning. Indirect questions,
which ask subjects to respond from the perspective of
another person, alleviated social desirability bias while
direct questions did not. In addition, research has found
that bias tends to be enhanced when respondents view
survey questions as sensitive or seeking to invade their
privacy (Gnambs and Kaspar 2014; Krumpal 2013).
While the PFAI questions are not indirect, it could be

that the most strongly worded PFAI questions do not
load well onto factors because they more blatantly con-
front the respondent with constructs which are viewed
as too personal or extreme to endorse. In addition, if re-
spondents associate FF constructs with social norms and
a related potential to generate personal discomfort or
negative reactions, they could be less likely to endorse
these beliefs (Fisher, 1993). Our cognitive interviews
support these conclusions as students were often op-
posed to strongly valenced words such as “hate,” words
that carried specific connotations such as “talent,” and
phrases that brought into question their personal agency
or privacy such as “not in control” and “everybody
knows.” Given our findings from cognitive interviews
and EFA analyses, in addition to findings from other
studies, we feel that removal of the ten items improves
the modified PFAI scale not only because it makes it
shorter, but also because it may avoid introducing
biases as a result of emotional reactions to question
wording.

A STEM-specific version of the PFAI
This work demonstrates support for our hypothesis that
a STEM-specific version of the PFAI is more appropriate
to measure FF in undergraduate STEM students than a
non-STEM-specific version. Conroy and colleagues’ ori-
ginal factor structure model for the PFAI did not yield a
good fit with the undergraduate STEM student sample.
Model fit improved significantly by removing explicit
items and the one reverse-code item and by adding lan-
guage to the items which specifically evoked the STEM-
specific academic achievement context. This version of
the PFAI corresponded better to data provided by un-
dergraduates enrolled in STEM than the original PFAI
model (Conroy et al. 2002; AIC of 13965.28 vs.
18802.92). However, even our best-fitting model from
the first round of CFA analysis (Step 1) was not what is
considered to be a “good” fitting model (Akaike 1998;
Kline 2010; Taasoobshirazi and Wang 2016). Thus, we

moved forward by allowing the PFAI items to recon-
verge into a new factor structure via an EFA (see Step 2)
which yielded a better fitting model for STEM under-
graduates (Steps 2–6). Our final model, which uses
STEM-specific language to introduce the items, provides
a “good” fit and can be used reliably to measure the
listed dimensions of FF (Akaike 1998; Kline 2010; Taa-
soobshirazi and Wang 2016).
Given that FF is specific to defined achievement con-

texts, varies from context to context (Cacciotti 2015;
Conroy 2001), and is seen in nuanced ways by STEM
professionals (Simpson and Maltese 2017), it is not sur-
prising that prompting students to consider the PFAI
items within a STEM context led to a better fit than con-
sidering the items in a non-specific context. It is also not
surprising that the organization of the PFAI items into
each dimension needed revision when used with a
STEM audience. This context specificity is not unique to
FF. Other intrapersonal elements such as mindset
(Dweck 2006) and ability to cope (Lazarus 1993; Skinner
et al. 2003) are known to be context specific. Yet, much
like FF, scales that measure such contexts are often
written for broad contexts and general audiences (e.g.,
Carver 1997; Dweck 2006). Given improvements to
model fit for FF when a STEM context was considered,
it is worth asking whether other measures of intraper-
sonal elements also need to be refined to address more
specific contexts and how specific those contexts need
to be for measurement accuracy. We also feel that there
is continued need for work on how to best assess FF in
STEM populations. The STEM-specific version of the
PFAI that we present as a result of this work is useful
for measuring the proposed dimensions. However, add-
itional qualitative interview studies could help elucidate
whether there are additional dimensions of FF unique to
STEM students that should be added to more com-
pletely measure the construct as a whole (Knekta et al.
2019). This, however, is beyond the scope of the current
work.

The STEM-specific version of the PFAI: valid for use with
undergraduate PEER populations
Results of our PEER CFA analyses (Table 5, row 10) re-
vealed that the modified PFAI was a good fit for a sam-
ple of solely PEER students. Likewise, our cognitive
interviews, which included PEER and non-PEER stu-
dents, did not uncover differences in interpretations of
items that could be attributed to race or ethnicity. Thus,
we assert that our modified STEM-specific version of
the PFAI can be used effectively to measure FF for
STEM PEERs. We consider this result a highly import-
ant finding of our work. As outlined in our introduction,
PEERs have historically been excluded from STEM
fields, and they continue to experience difficulties and
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leave (or be excluded from) STEM at higher rates than
their majority peers (Asai 2020; Huang et al., 2000;
NCSES, 2019). PEER leaving is highly detrimental to
STEM and society since losing diversity threatens scien-
tific creativity and innovation (Freeman and Huang
2014; Page, 2007), and may result in scientific communi-
ties failing to address questions that are relevant and im-
portant for PEER communities (Hacker 2013). Notably,
PEER departure from STEM continues to happen des-
pite decades of research and efforts to better understand
what helps PEER students to persist (e.g., Barbosa 1975;
Chang et al. 2014; Estrada et al. 2011; Estrada et al.
2016; Estrada et al. 2018; Estrada and Matsui 2019; Hur-
tado et al. 2010; Maton et al., 2009; Matthews 1990) and
consistent support for programs that assist PEER stu-
dents (e.g., HHMI Inclusive Excellence, NSF IN-
CLUDES). And, attrition of PEER students occurs at
disproportionately higher rates from STEM majors than
other fields of postsecondary study (Riegle-Crumb et al.,
2018). It is clear that we do not understand the whole
picture. However, we do know that STEM failures or
lack of achievement to an expected standard may pre-
cipitate a decision-making process that results in PEERs
leaving STEM or disengaging from STEM challenges
(Corwin et al. 2020; Henry et al. 2019). In addition, FF
may contribute to that critical decision to leave STEM
(Nelson et al. 2019). FF, then, may be a key component
in understanding how “failing” (or even failing to meet
one’s own high expectations) can affect PEER students’
success and persistence.
To understand how this construct acts, it is crucial

to be able to accurately measure it for PEER popula-
tions, and we cannot assume that an instrument
valid for the majority of undergraduates is valid for
PEERs. As Knekta et al. (2019) explain, “validity is
not a property of the measurement instrument,” ra-
ther it describes how well that instrument functions
for a specific population in a specific context (p. 2).
Any conclusions drawn from the instrument are only
as strong as the instrument itself (Cronbach and
Meehl 1955). Therefore, the evidence that the modi-
fied STEM-specific PFAI functions well for PEER
students is an important result of this work and can
be applied in future research on developing inclusive
practices in STEM education. However, we wish to
again highlight that more work can be done to fur-
ther understand FF in PEERs. Extensive interview
studies with PEERs specifically may be able to un-
cover other dimensions of FF specific to PEERs.
This, unfortunately, is beyond the scope of our work.
If this work were to be done, however, additional di-
mensions specifically relevant to PEERs could be
added to our version of the PFAI to further improve
STEM PEER FF measurement.

Differences in estimated FF among models
When embarking on this work, we predicted that FF,
and specifically the constructs measured by the items
in the PFAI, might be interpreted differently by
STEM students considering them in a STEM context.
We predicted that different interpretations might lead
some items to function well while others may not
and that this might result in the original version of
the instrument either over- or under-estimating FF in
STEM contexts. Since FF has potential to influence
student motivation, behavior, and even persistence in
STEM, we felt that it was very important to investi-
gate the validity of the PFAI for STEM students in
STEM contexts and to understand how use of the ori-
ginal, unmodified, version of the instrument might
misrepresent results.
This was a particularly important question for us to

address given that our aim was to modify the PFAI to
ensure accurate measurement of FF for STEM students
considering STEM contexts. An accurate measure will
allow future researchers to (a) determine how STEM
students across contexts and from different demographic
groups experience FF, (b) monitor changes in FF as a re-
sult of specific efforts or interventions designed to ad-
dress it, and (c) assess what experiences lead to more or
less FF in STEM. Our results support the claim that the
final modified version of the PFAI is more accurate than
the original unmodified version for assessing FF in
STEM undergraduates.
To evaluate how measurement of FF improved as a re-

sult of iterative changes to the PFAI scale, we compared
mean differences in FF across scale iterations within the
same sample of students. Mean and standard error for
all factors across our iterations with our Fall 2018 data
including (a) Conroy et al.’s original PFAI, (b) the PFAI
with STEM-specific language added (Step 1), and (c) our
post-EFA modified version (Step 5) are displayed in
Table 8. In addition, we present a comparison of mean
differences among a subsample of our PEER data be-
tween the original PFAI model with STEM-specific lan-
guage added and our fully modified model. Mean
differences among these groups were tested using paired
samples t-tests. In both our mixed and PEER samples,
we find significant differences in the mean levels of the
majority of the FF dimensions. This confirms our con-
cern that existing assessment measures, such as the ori-
ginal PFAI, might misrepresent the actual level of FF
experienced by undergraduates in STEM contexts. This
may be a result of students not focusing their responses
on STEM-specific contexts when completing the original
PFAI or a result of poor fit of the factor structure of the
original PFAI when considering STEM contexts. Regard-
less, these results support the need for the revised struc-
ture presented in this study.
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The specific mean value differences within and across
the FF dimensions and models yield several interesting
findings. In our Fall 2018 sample, for both the original
Conroy model and the version of the PFAI with STEM-
specific language added, internally driven causes of fail-
ure (i.e., FSE, FDSE) were reported in the highest
amounts, followed by the more immediate external
causes (i.e., FUIO, FIOLI), with the lowest levels of FF
reported for the most distal FUF. However, when means
were re-computed after the factor structure was modi-
fied via EFA, FUF became the second-highest driver of
FF. Among PEER students, FUF was already a prominent
worry, although significant increases were still observed
with the modifications to the model. This suggests that,
compared to the original PFAI, FUF seems to be espe-
cially sensitive as a motivation to avoid failure for under-
graduate STEM students, particularly for PEERs. While
poor exam grades are not the only challenge or failure
that students face in the STEM context, they are a highly
cited one. When given the opportunity to provide a re-
cent example of a failure, approximately 50% of both
samples presented in Table 8 responded with stories that
involved poor scores on tests or exams. Research sug-
gests that the perceived utility of exam results to assist
with future goals is second only to perceived test diffi-
culty in predicting student test anxiety (Bonaccio and
Reeve 2010). In addition, multiple studies of premedical
students found that a leading cause of STEM attrition is
difficulty meeting the high demands of science courses
(Lin et al. 2013). If the PFAI prompts undergraduates to
specifically consider the context of their struggles and
challenges within STEM, a majority may consider past
failures on tests or other achievement measures. Rumin-
ating on achievement measures that could impact their
admission to graduate/medical school or other future
aspirations is likely to lead to increased FUF. PEER stu-
dents especially may feel like the loss of an entire career

or life goal is one failure away since they must often
cope with added academic pressures from their own
families and communities that result from being a mi-
nority (e.g., Robinson 2013; see also work on tokenism
theory: Kanter 1977).
Another interesting change occurred among mean

levels of those factors related to important others either
losing interest (FIOLI) or becoming upset (FUIO). While
significant mean differences can be seen for both FIOLI
and FUIO, the direction of these differences is not con-
sistent. Considering failures in the STEM context in-
creased students’ FUIO; however, it decreased their
FIOLI. Also, in both samples, students reported the low-
est levels of FIOLI compared to all other FF dimensions.
The current generation of traditional university students
express that parents are often sources of both emotional
support and pressure. Specifically, many students have
described the pressure they feel from parents to choose
certain majors or careers and to graduate within a cer-
tain timeframe (Montag, 2012). If STEM students ex-
perience this increased parental (or other) pressure to
succeed, they might expect struggles and failures to yield
disappointment (higher FUIO), but not necessarily a de-
crease in interest (that is, interest will continue in the
form of continued pressure; lower FIOLI). Observing
mean levels, it appears that FUIO may be reported at
higher levels by PEER students, suggesting that this may
be a more salient fear for minoritized students in STEM.
The impact of this pressure may be particularly high for
students who feel that they represent their entire family
or identity group (or are made to feel this way by their
instructors and peers) and thereby feel the weight of ex-
pectation and attendant disappointment in the face of
any perceived struggle or failure (Kanter 1977; Robinson
2013; Robinson et al. 2013; Winkle-Wagner 2009). This
is further seen in the fact that, while fears around experi-
encing shame and embarrassment remained the same

Table 8 Mean and standard error of PFAI dimensions by model type

Complete Fall 2018 sample
Mean (SE) a

PEER subsampleb

Mean (SE) a

Original Conroy
model

Original model + STEM-specific
language
(Step 1)

Revised
model;
(Step 5)

Original model + STEM-specific
language
(Step 1)

Revised
model;
(Step 5)

Overall
FF

2.43 (.024)A 2.47 (.023)A 2.55 (0.13)A 2.63 (0.07)A 2.69 (0.07)B

FUF 1.46 (.030) A 1.69 (.034)B 2.76 (0.09)C 2.68 (0.07)A 2.82 (0.09)B

FIOLI 2.22 (.031)A 2.12 (.030)B 2.12 (.030)B 2.08 (0.08)A 2.08 (0.08)A

FUIO 2.30 (.031)A 2.40 (.031)B 2.65 (0.12)C 2.60 (0.08)A 2.75 (0.09)B

FSE 3.30 (.030)A 3.24 (.032)A 3.18 (0.06)A 2.98 (0.09)A 3.12 (0.10)B

FDSE 2.87 (.029)A 2.88 (.032)A N/Ac 2.80 (0.08) N/Ac

Notes:a Means with differing subscripts are significantly different at p < .05 based on paired samples t-tests b Approximately 60% (n = 166) of our total PEER
sample responded to the full set of the 25 original PFAI items with STEM-specific language, allowing for direct comparison of means between the original model
with STEM-specific language and the revised model. cThe FDSE subscale was dropped from the revised measure, so there is no descriptive information to display
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across models for the full Fall 2018 sample, there was a
significant increase in FSE observed in the PEER sub-
sample by using the revised model. It is also interesting
to note that the FIOLI dimension was the only one
which did not result in any further improvements under
our EFA. It is possible that, while the modified version
of the PFAI may capture unexpressed variation in the
other dimensions, the FIOLI dimension already reflected
a valid expression of respondents’ experiences.
While the scope of this work is insufficient to draw

conclusions regarding what precisely distinguishes an
“effective” item from one that is less so with regard to
assessing STEM-specific FF in undergraduate students,
our results clearly suggest that students responding in
this context do so in ways that are characteristically
unique from Conroy’s validation sample. Given the over-
all direction of these results, it appears that the original
version of the PFAI is likely to significantly underesti-
mate students’ reported experiences of FF within aca-
demic STEM contexts. Future qualitative studies could
explore the potential explanations proposed for varia-
tions in dimension means and seek to better understand
the qualities of “good” items to assess FF in STEM
contexts.

Conclusions and future directions
Taken together, our results support a revision of Con-
roy’s original PFAI to address STEM students’ unique
experiences of FF. First, students’ responses appear to be
STEM context-dependent. This is not surprising consid-
ering that Conroy et al. (2001) initially began classifying
perceived consequences of failure with the argument
that it was important to delineate such information
across performance contexts. Second, STEM undergrad-
uates show significant differences in their levels of FF
based on the individual items they agree or disagree with
on the PFAI. While in nearly all cases students’ re-
sponses produced the same factors as the original PFAI
(that is, the same types of items still clustered together
during factor analysis), fewer of the items emerged for
most dimensions. Clarification is needed on whether and
why students feel certain items represent their fears re-
lated to failure in STEM contexts while others do not.
Any basic practices or principles discovered could be ex-
tended to assessment of intrapersonal elements in STEM
contexts in general.
Overall, there appears to be a pattern in our results

suggesting that FSE may be reported at high levels re-
gardless of specific context. However, FUF and FUIO are
the individual PFAI dimensions reported at the highest
levels specifically by STEM undergraduates while FIOLI
is of overall least concern. However, this only reflects di-
mensions which were previously proposed and included
in the PFAI. Given that our results demonstrate the

uniqueness of FF within the STEM context, research
with the potential to identify other reasons STEM stu-
dents may fear failure is also warranted. The purpose
and scope of this work was limited to refining the PFAI
for more accurate assessment within a specific context.
Extensive qualitative work is recommended to elucidate
whether there are additional dimensions influencing
STEM students’ FF.
Finally, this work underscores the point that under-

graduate STEM students represent a unique population
in academic achievement contexts and that accurately
assessing the effects of interventions, especially those on
intrapersonal elements such as FF, requires modified (or
even brand new!) assessment tools. It is also especially
important that we ensure our assessment tools accur-
ately account for the experiences of nontraditional and
underserved STEM students, especially PEERs, since
these students are likely to leave STEM at higher rates
(Asai 2020; National Science Board 2018; Steele 1997;
Stinebrickner and Stinebrickner 2014). Results of our
factor analyses and student interviews strongly suggest
that our shorter, 15-item STEM-specific version of the
PFAI provides the best fit for assessing levels of FF in
STEM undergraduate students and STEM PEERs. Use of
this measure will allow a more accurate assessment of
FF in these populations and conveniently reduces survey
burden on students.
We hope that future studies of FF will seek to bridge

research with practice for STEM education improvement
via the use of the modified PFAI. Research that relates
levels of the various FF dimensions to STEM
undergraduate academic outcomes (emotional, behav-
ioral, or cognitive) using appropriate predictive statistical
methods would be highly informative. Such work would
not only help to explain and predict positive academic
outcomes, but also be valuable when designing interven-
tions to improve student success and retention in STEM
majors. For interventions that target FF as a means of
improving STEM student success (e.g., reducing evalu-
ation anxiety, Hjeltnes et al. 2015; failure attribution
retraining, Haynes et al. 2009), the modified PFAI could
be used as a pre- and post-survey to quickly assess inter-
vention efficacy. In particular, we would encourage re-
searchers and practitioners using the PFAI to consider it
as a tool to assess the emotional cost of engaging in
research-based and active pedagogies as these contexts
may both exacerbate FF and also help students to
better cope with future failures via exposure to chal-
lenge. As instructors, we must consider not only the
learning implications of incorporating active, research-
based pedagogies, but also the emotional, social, and
intrapersonal elements affected by our choices, espe-
cially with regard to situations in which failure is a
possibility.
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Future research should also investigate assessment of
other intrapersonal elements, such as coping style and
sense of belonging, that could be context-dependent and
may require careful consideration of the population of
interest. It is clear from this work and others (e.g., Knekta
et al. 2019; Knekta et al. 2020; Rowland et al. 2019) that
considering how to accurately assess these complex ele-
ments in STEM contexts may be imperative to gain an un-
derstanding of their roles in influencing student
outcomes. Currently, there is a paucity of instruments
available to measure intrapersonal elements in STEM con-
texts (Henry et al. 2019) and more generally a need to im-
prove the quality of measurements for latent variables in
STEM populations (Knekta et al. 2019; Limeri et al. 2020;
Rowland et al. 2019). Intrapersonal elements tend to con-
sist of latent variables that require more complex means
of assessment, often construction of survey instruments
with multiple items (Knekta et al. 2019). In addition, due
to colloquial use of terms, intrapersonal elements are
often confused with other constructs (e.g., interest and
curiosity; Rowland et al. 2019) as is the case with anxiety
and FF (Cacciotti et al. 2016; Lazarus 1991). Investigating,
designing, and exploring validity of assessments for these
elements can help to both clarify definitions while also en-
suring their accurate measurement for the population in
question. Beginning with existing measures valid for other
populations can serve as an excellent starting point to im-
prove upon a measure for undergraduate STEM popula-
tions (Knekta et al. 2019).
In conclusion, we recommend that researchers inter-

ested in exploring the effects of intrapersonal elements on
student outcomes in STEM undergraduates make use of
our modified STEM-specific PFAI assessment measure,
consider revalidating other assessments of intrapersonal
elements that may be context-dependent for STEM stu-
dents, and continue considering best assessment practices
for undergraduate STEM education research (Knekta
et al. 2019). The results of this study highlight the inability
of existing measures to fully capture intrapersonal ele-
ments such as FF in undergraduate STEM populations
and the need for even more specific focus on assessing
these elements for students from underserved groups in
STEM. This underscores the continuing need to refine
and develop context-specific assessment measures as we
work towards a better understanding of the complex rela-
tionships between these elements and student outcomes.
Only with such confidence in our assessment tools will
STEM educators succeed in developing pedagogical strat-
egies to nurture a diverse and persevering STEM work-
force poised to meet and answer the complex scientific
challenges of the twenty-first century.
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